Calculus AB
 5-2
 $\ln (x)$: Integration

Find the indefinite integral. (pg 340)
2) $\int \frac{10}{x} d x=10 \ln |x|+C$
$\ln x^{10}+C$

Integration of Trigonometric Functions
$\int \sin x d x=\quad \int \cos x d x=$

$$
\begin{aligned}
& \int \tan x d x=-\int \frac{-\sin x}{\cos x} d x \quad \begin{array}{l}
u=\cos x \\
d u
\end{array} \\
&=-\int \frac{1}{u} d u=-\ln |\cos x|+C \begin{array}{c}
\text { or } \ln |\cos x|+C \\
=\ln |\sec x|+C
\end{array} \\
&-\ln |\cos x|+C
\end{aligned}
$$

$$
=\ln |\sin x|+c
$$

$$
\begin{array}{ll}
\int \sec x d x= & \int \csc x d x= \\
\ln |\sec x+\tan x|+c & -\ln |\csc x+\cot x|
\end{array}
$$

The proofs for these theorems are in the text.
I skipped them in class to save time in the lesson.
They are quite interesting, and I recommend reading them!

Find the indefinite integral.

$$
\begin{aligned}
& \text { 34) } \begin{array}{l}
\iint \frac{1}{2} \sec \left(\frac{x}{2}\right) d x=\frac{x}{2} \\
d u=\frac{1}{2} d x \\
2 \int \sec u d u \\
2 \ln \left|\sec \frac{x}{2}+\tan \frac{x}{2}\right|+C \\
\ln \left(\sec \frac{x}{2}+\tan \frac{x}{2}\right)^{2}+C
\end{array}
\end{aligned}
$$

Solve the differential equation.

$$
\text { 44) } \begin{aligned}
\frac{d y}{d x} & =\frac{2 x}{x^{2}-9} ;(0,4) \\
\int d y & =\int \frac{2 x}{x^{2}-9} d x \quad u=x^{2}-9 \\
y & =\ln \left|x^{2}-9\right|+c \\
4 & =\ln |(0-9)|+c \\
4 & =\ln 9+c \\
4 \ln 9 & =c \\
y & =\ln \left|x^{2}-9\right|+4-\ln 9 \operatorname{or}\left(\ln \frac{\left|x^{2}-9\right|}{9}+4\right.
\end{aligned}
$$

Find $f^{\prime}(x)$.
68) $f(x)=\int_{0}^{x} \tan t d t \quad \begin{aligned} & \text { Use the second fundamental theorem } \\ & \text { of calculus.... }\end{aligned}$

$$
f^{\prime}(x)=\tan x
$$

Evaluate the definite integral. Check using the graphing calculator.

$$
\begin{aligned}
& \text { 54) } \frac{1}{2} \int_{-1}^{1} \frac{21}{2 x+3} d x=\frac{1}{2} \int_{\begin{array}{l}
\text { Alternate solution substituting } \\
\text { the x back in for the u, keeping } \\
\text { the original limits. }
\end{array} \frac{1}{4} d u=\frac{1}{2} \ln |u|}^{\left.\left.\frac{1}{2} \ln \right\rvert\, 2 x+3\right) \mid} \begin{array}{l}
\left.\frac{1}{2} \ln 5-\ln 1\right) \\
\ln \sqrt{5} \quad \begin{array}{l}
\text { Using the laws of logarithms, } \\
\text { we can bring the half from the front } \\
\text { up to the power. The half power } \\
\text { becomes the radical. }
\end{array} \\
\ln (1)=0
\end{array}
\end{aligned}
$$

Find the average value of the function over the interval.

$$
\begin{aligned}
& \text { *) } f(x)=\frac{\ln x}{x} ; \quad[1, e] \\
& \frac{1}{e-1} \int_{1}^{e} \frac{\ln x}{x} d x \quad u=\ln x \\
& \frac{1}{e-1} \int_{0}^{1} u d u \frac{1}{e-1}\left[\frac{1}{2} u^{2}\right]_{0}^{1} \\
& \frac{1}{2(e-1}[1-0 \\
&\left.\frac{1}{2 e-2}\right]
\end{aligned}
$$

